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ENERGY SPECTRA OF STRONGLY STRATIFIED AND ROTATING TURBULENCE∗

ALEX MAHALOV†, BASIL NICOLAENKO‡ , AND YE ZHOU§

Abstract. Turbulence under strong stratification and rotation is usually characterized as quasi-two
dimensional turbulence. We develop a “quasi-two dimensional” energy spectrum which changes smoothly
between the Kolmogorov -5/3 law (no stratification), the -2 scalings of Zhou for the case of strong rotation,
as well as the -2 scalings for the case of strong rotation and stratification. For strongly stratified turbulence,
the model may give the -2 scaling predicted by Herring; and the -5/3 scaling indicated by some mesoscale
observations.
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1. Introduction. The important applications of turbulence under strong stratification and rotation in
geophysics and engineering are well documented (Pedlosky [1], Hopfinger [2], Rodi [3], Fernando and Hunt
[4], Rubinstein and Zhou [5]). As an example, large-scale flows in oceans and earth’s atmosphere are known
as almost two dimensional, but not exactly so. Typically, one characterizes this type of flows as quasi-two
dimensional turbulence. In this note, we discuss the development of the spectra for turbulence subject to
strong (stable) stratification and rotation.

We define the asymptotic regimes of geophysical dynamics in terms of the following non-dimensional
parameters. Let H be the vertical (spectral) length scale, L be the horizontal length scale, and Uh be a
characteristic horizontal velocity scale. Then the spectral aspect ratio can be defined as a = H/L. We define
Froude number based on horizontal and vertical scales:

Fh = Uh/LN0 ≡ 1/N, Fv = Uh/HN0 = Fh/a.(1)

The classical Rossby and anisotropic Rossby numbers are defined as follows

Ro = Uh/Lf0 ≡ 1/f, Roa = Ro× a.(2)

Here N0 is the Brunt-Väisälä frequency for constant stratification gradient and f0 = 2Ω0 is the Coriolis
parameter (Ω0 is the frequency of background rotation); the vertical axis is taken to be aligned with the axis
of rotation and the mean stratification gradient. The governing flow equations are three-dimensional (3D)
Euler-Boussinesq equations for rotating stratified fluids with zero-flux boundary conditions in the vertical
direction. Such boundary conditions imply zero tangential stress on the vertical boundaries.

The Burger number characterizes relative importance of the effects of rotation and stratification (McWilliams
[10]):

Bu = Ro2
a/F 2

h ≡ Ro2/F 2
v ≡ N2

0 a2/f2
0(3)
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Fig. 1.  Geophysical Dynamics: the global picture for small Froude or small Rossby regimes.
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Fig. 1.

with Bu << 1 corresponding to rotation-dominated and Bu >> 1 corresponding to stratification-dominated
flows. Also, a measure of the relative importance of (stable) stratification versus rotation is the internal
radius of deformation Λ. The internal (Rossby) radius of deformation Λ is defined as

Λ = N0H/f0,(4)

so that Bu = (Λ/L)2. When L >> Λ, the flow is organized in quasi-2D vertical columns and when L << Λ,
the flow is organized in thin horizontal layers with a strong vertical variability.

From the mathematical analysis (Babin et al., [6-9]), we constructed Fig. 1 to illustrate the global picture
of geophysical dynamics at small Froude and/or small Rossby regimes. Since we are not taking a → 0, either
Fh or Fv can be used in description of asymptotic regimes. Then Fr denotes either of these numbers.

When only strong rotation exists (Fig. 1, vertical axis), any solution of the initial value problem for 3D
Euler-Boussinesq/Navier-Stokes system can be split into two parts. The first component is a solution of two-
dimensional (2D) barotropic Euler-Boussinesq/Navier-Stokes system with vertically averaged initial data.
The dynamics of the second part which describes vertical variability is called ageostrophic in this limiting
context. In this asymptotic regime, it is exactly solved in terms of 2D dynamics of vertically averaged fields.
The error of the splitting is at the order of the anisotropic Rossby number (defined by Eq. (2)), a very
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small number in many situations (Babin et al., [6], [8-9]). Energy cascades for the ageostrophic modes are
completely frozen in the vertical direction and the ageostrophic dynamics is pure phase turbulence. In pure
phase turbulence, the amplitudes of the ageostrophic modes remain constant in absolute values; turbulent
dynamics are restricted to the phases of the ageostrophic modes. The ageostrophic field is phase locked to
phases associated with vertically averaged vertical vorticity and vertical velocity which are advected by 2D
turbulence of vertically averaged fields. There is no slaving of the amplitudes of ageostrophic modes by the
2D turbulence, only phase locking.

When stratification is present, the cascades of ageostrophic modes (AG) become ‘unfrozen’. As stratifi-
cation increases, the direct cascade of ageostrophic energy from large scales to small scales increases (Babin
et al., [8]). When both rotation and stratification effects are of the same order of magnitude – the situation
called Burger one regime (McWilliams [10]), Babin et al. [7-8] established the splitting between 3D quasi-
geostrophic (QG) and reduced ageostrophic fields using the Craya-Herring cyclic bases (Lesieur, [11]). In
these bases the ageostrophic modes are characterized in terms of the divergent velocity potential (horizon-
tal divergence) and the geostrophic departure/thermal wind unbalance (e.g. [8]). The QG modes inverse
transfer the vortical (rotational) energy upscales. On the other hand, direct energy cascades of the AG field
provide a mechanism for nonlinear geostrophic adjustment. This is fundamentally different from the rota-
tion dominated regimes where AG cascades are frozen. The nonlinear geostrophic adjustment mechanism
is indeed the capacity of the AG dynamics to transfer energy to smaller scales and eventually dissipate its
inertio-gravitational energy (Farge and Sadourny, [12]). Direct cascades of energy of the ageostrophic modes
indicate that the observed −5/3 power-law is the spectrum of internal gravity waves with direct energy
cascade to large wavenumbers (small scales).

2. Model Development. In order to infer the form of the inertial-range spectrum E(k) for different
asymptotic regimes, it is necessary to estimate the magnitude for the triple velocity correlations. In general,
τ3, the time scale for the decay of the triple correlations responsible for inducing turbulent spectral transfer,
may depend on any relevant turbulence parameters (Kraichnan [13], Zhou [14]). When energy is conserved
by the nonlinear interaction and a local cascade has been assumed, the energy flux, which equals to the
dissipation rate ε, is independent of wavenumber k. Local cascade also implies that ε is explicitly proportional
to τ3 and depends on the wavenumber and on the power of the omni-directional energy spectrum. A simple
dimensional analysis leads to

ε = A2τ3(k)k4E2(k)(5)

where A is a constant. When the time scale for triple decorrelation is simply given by the nonlinear time
τ3(k) = τnl = [k3/2E1/2(k)]−1, the classical Kolmogorov spectrum is recovered.

At asymptotic limits of strong rotation, strong stratification and the limit of strong rotation and stratifi-
cation, there are two disparate time scales. The difference in time scales and anisotropies in length scales are
crucial for the mathematical analysis of Babin et al. [6-9] and is the basic requirement for the methodology
of our phenomenological analysis (Kraichnan [13], Zhou [14], Mahalov and Zhou [15], Rubinstein and Zhou
[5]). The major difficulty encountered in understanding dynamics of geophysical flows is the influence of
the oscillations (inertio-gravity waves) generated by the rotation and stratification. This effect leads to the
modification of the spectral time for energy transfer down scales.

We recall that the dispersion relation for inertio-gravity waves is given by the formula ω2
k = N2

0
k2

h

k2 +f2
0

k2
3

k2

where k = (k1, k2, k3) is the wavevector, k2
h = k2

1 + k2
2 and k2 = k2

1 + k2
2 + k2

3 (axes of rotation and gravity
are along the vertical axis e3 = [0, 0, 1]). As above, we define the vertical and the horizontal spectral scales
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as H = 1
|k3| , L = 1

kh
. If a = H/L = kh/|k3| is the ratio of these length scales then ω2

k = (f0/α)2 + (N0/β)2

where β =
√

a−2 + 1 and α =
√

a2 + 1. Then the spectral Burger number, Eq. (3), is a ratio of the spectral
stratification frequency N0/β and the spectral rotation frequency f0/α: Bu = (N0/β)2

(f0/α)2 = (N0α)2

(f0β)2 = N2
0 H2

f2
0 L2 .

We first give a brief treatment for strongly rotating turbulence case. In a regime of high Reynolds
numbers and low Rossby numbers, turbulence is characterized by a short time scale τf = α/f0, where
α =

√
a2 + 1 and f0 = 2Ω0. A direct application of τ3 = τf results in the energy spectrum for turbulence

subject to strong rotation

E(k) = Cf (εf0/α)1/2k−2(6)

where Cf is a constant (Zhou [14]). The introduction of the aspect ratio into the time scale is an improvement
over our previous phenomenological analysis (Zhou [14], Mahalov and Zhou [15]) since now the model can
distinguish the anisotropic nature of rotating flow.

For turbulence in the Burger one regime, the same procedure, namely setting τ3 = τfN , leads to the
energy spectrum for turbulence subject to strong rotation and stratification:

E(k) = CfN [ε
√

(N0/β)2 + (f0/α)2]1/2k−2,(7)

where β =
√

a−2 + 1.

Based on the analogy between the rotating and stratified turbulence (Hopfinger [2]), previous results
can be extended to the cases of strongly stratified turbulence. Substituting τ3 = τN leads to

E(k) ∼ (εN0/β)1/2k−2.(8)

This reduces to a result found previously by Herring [16] and Kimura and Herring [17] for isotropic case.

We note that, however, based on experimental finding by Dickey and Mellor [18], some further extensions
may be needed in the cases of strongly stratified, and probably also for the case of stratified and rotating
turbulence. We shall restrict our discussion below to strongly stratified turbulence for brevity. The results
can be extended trivially to include the rotation effect by using τfN instead of τN . For a strongly stratified
flow, the energy transfer process may be modified in two ways. First, the effect of the internal waves is
reflected in the reduced time scales for the triple correlations. This effect reduces the rate of the direct
energy transfer down scales and leads to the spectrum predicted by Herring [16]. Second, the effect of the
internal waves may lead to a direct reduction in the energy flux, and this reduction is called the “energy
radiation rate”. Indeed, for moving–grid generated turbulence, Dickey and Mellor [18] showed a clear break
in the decay rate of the turbulence energy when the buoyancy effects become active. This break indicates
the collapse of three dimensional turbulence at nearly all scales. The interpretation given by Dickey and
Mellor [18] is that the nonlinear energy transfer now has the general form

ε = (u3/l)− CN3
0 l2.(9)

Here u is the rms of turbulent velocity, l is the integral scale obtained by integrating the longitudinal velocity
autocorrelation, and C is a constant estimated experimentally as 1.910−2 (Dickey and Mellor [18]).

Including the “energy radiation term” of Dickey and Mellor requires only a very minor modification to
our procedure. Noting that Eq. (5) can be rewritten as

ε′ = A2τ3(k)k4E2(k)(10)
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where we have introduced the effective dissipation rate ε′ = ε+CN3
0 l2. We remark that when the first effect

of stratification is weak (τ3 ∼ τnl), the energy spectrum modified by the second effect of stratification takes
the form

E(k) ∼ (ε′)2/3k−5/3.(11)

In general, the lifetime of triple correlations in rotating and stratified turbulence might be more accu-
rately treated by taking into account the possibility that these correlations decay because of the influence of
both wave propagation and nonlinear triadic interactions (Zhou [14]). The simple choice

1
τ3(k)

=
1

τnl(k)
+

1
τE(k)

(12)

satisfies the appropriate limiting cases: τ3(k)→ τnl without external agencies, and τ3(k)→ τE with external
agencies. Here τE may be taken as τf , τN , or τfN .

We now find that the general energy spectrum for strongly stratified turbulence takes the form

E(k) = Z ′2A−4/3ε′2/3k−5/3,(13)

where Z ′ is given by

Z ′ =
1
2

(√
Y

′
+

√
−Y ′ + 2

√
Y ′2 + 4Z ′

0

)
(14)

where

Y ′ =
3

√
1
2

+

√
1
4

+ (
4Z ′

0

3
)3 +

3

√
1
2
−

√
1
4

+ (
4Z ′

0

3
)3.(15)

The parameters A = C
−3/4
K , and Z ′

0 = [Ak′
E

k ]2/3. Again, depending on the situation, k′
E may take

values from k′
N = (N3

0 /ε′)1/2 (for strongly stratified flows), and k′
fN = ([(N0/β)2 + (f0/α)2]3/2

/ε′)1/2 (for
stratified/rotating flows). These equations reduce to the classical Kolmogorov “-5/3” spectrum when Z ′

0 → 0
(so that Z ′ → 1), and to our strongly stratified or rotation/stratification modified “-2” spectrum when
Z ′

0 → ∞ (so that Z ′ → Z ′
0
1/4). Alternatively, the scaling of the energy spectrum in strongly stratified case

may remain as −5/3 (as pointed out already, by τ3 ∼ τnl). For intermediate strength of the stratification
(or rotation/stratification) the spectrum varies smoothly between these two limiting forms, according to the
increase of the controlling parameter Z ′

0 with increasing ratio k′
E/k.

We note the difference between the energy spectra in a 2D case (Kraichnan [19]) and quasi-2D case.
Based on statistical turbulence theory, Herring [16] find that it is quite difficult to justify a 2D spectra −5/3
(for scales larger than the energy injection scale) and −3 spectra (for scales smaller than the energy injection
scale) for a stratified flow. The reason is that the triple-moment relaxation is dominated by waves. The fact
that the time scale for triple velocity correlation is dominanted by faster time scale forms the foundation for
our development and the work by Herring [16].

3. Conclusions. We conclude this note by noting that our energy spectrum, in its most general form,
would lead to an energy spectrum which changes smoothly between the Kolmogorov −5/3 law (no stratifi-
cation), the −2 scalings of Zhou [14] for the case of strong rotation, as well as the −2 scalings for the case
of both strong rotation and stratification. For strongly stratified turbulence, the model may give the −2
scaling predicted by Herring [16] and the −5/3 scaling indicated by some observations at mesoscales.
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